
NOTATION 

A, surface area; D, diameter; f, fraction of the surface that is in contact with the 
bubbles; g, acceleration of gravity; k, optical contrast of the phase; m, porosity; q, rad- 
iant flux density; R, radius; T, absolute temperature; t, time, u, velocity; s, degree of 
blackness; • degree of bubble deformation, ~, kinematic viscosity; o, Stefan--Boltzmann con- 
stant; Re, Reynolds number; Ar, Archimedes number. Subscripts: 0, start of fluidization; b, 
bubble; em, emulsion phase; fb, fluidized bed; g, gas; p, particle; r, radiometer; w, wall. 
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RADIATIVE--CONDUCTIVE HEAT TRANSFER IN "HEATER--MULTILAYER STRUCTURE" SYSTEM 

B. B. Petrikevich and S. N. Shchugarev UDC 536.24 

The coupled problem of radiative--conductive heat transfer is solved by a numer- 
ical method. The integral equation describing radiative heat transfer is approx- 
imated with a system of linear algebraic equations. 

The main purposes of a thermal experiment are identifying the structure of the mathemat- 
ical models of the thermal state and analyzing heat-transfer processes which actually occur 
in objects under study. Natural heating tests are extremely complicated and costly. For this 
reason, wide acceptance have received testing methods based on studying the thermal state of 
a natural structure on simulating test stands such as, for instance, test stands simulating 
radiative heating. Performing such tests requres careful preparation and, above all, scien- 
tifically substantiated rational planning. Lately new approaches are taken in many places 
not only to processing of experimental data but also to optimal organizing of experiments. 
One way to improve the effectiveness of experimental studies is applying modern methods of 
mathematical simulation of the thermal state of an object under test stand conditions during 
the test preparation stage. 

In this study will be developed a mathematical model of heating of an axisymmetric struc- 
ture during tests performed in radiative heating stand, a model based on the solution to the 
coupled problem of radiative--conductive heat transfer. 

The mathematical model of radiative--conductive heat transfer involves a simultaneous sol- 
ution of two problems, radiative heat transfer in a "heater--irradiated surface" system and 
transient heat transfer in a mu!tilayer structure. 
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External Problem of Radiative Heat Transfer. The distribution of the density of integral 
thermal radiation flux over the surface of the structure under study is determined through 
analysis of the::radiative heat transfer in the system, the latter containing the irradiated 
axisymmetric surface of any intricate,shape and a centrally located cylindrical radiator. 
The medium between diffusely emitting surfaces and diffusely reflecting surfaces in the sys- 
tem is assumed to be diathermal, and the emissivity at every point of a surface is assumed 
to be equal to theabsorptivity. 

With knowngeometry, optical characteristics, and temperature at every point of the system 
surfaces, the process of radiative heat transfer is described by an integral equation which 
can be written for the effective radiation density as 

Eeff(M) -- R (M) ~ Eeff(N ) K (M, N) dF = Ec (M), M, N 6 F. (i) 
F 

An analytical solution of Eq. (i) is possible only for a limited number of systems, geo- 
metrically rather simple ones. For this reason, a wide acceptance have received approximate 
methods of solving problems of radiative heat transfer, specifically the zonal method: ap- 
proximating a surface of the given system with plane zones within which the density of effec- 
tive radiation fluxes are either averaged according to some law or are assumed to be constant 
on the basis of certain premises. 

In this case the integral equation (i) is replaced with the system of algebraic equa- 
tions 

N 

~ffi Ri ~ Ecffk ~ = Ec~, i = I, 2 ..... N, (2) 

with the direction coefficient of mutual irradiance ~ik generally defined by the expression 

1 . COS ~ i  COS =~  dFkdF~. (3) 

The choice of method selected for solving this system of linear algebraic equations is 
very important, since solution of the problem of coupled radiative--conductive heat transfer 
requires repeatedly determining the field of thermal radiation fluxes, Methods of solving 
systems of linear algebraic equations have been analyzed and optimal selection of the initial 
approximation has been considered in another study [i]. Here the density of thermal fluxes 
fed to a structure was determined from the solution to the system of linear algebraic equa- 
tions by the Seidel iteration method. 

The main difficulties in studying radiative heat transfer in this formulation by the 
zonal method arise during determination of the mean direction coefficents~ik of mutual!Jr - 
radiance. They can be calculated by various methods. Several studies have been published 
already [2, 3] where the authors deal with determination of ~ ik in axisymmetric three-dimen- 
sional systems. The capacity of direct-access memories and the high speed of modern computers 
make it feasible to effectively use numerical methods for determining these direction coef- 
ficients. In this study they will be calculated by a numerical method. 

Existence of axial symmetry in a given system permits approximating a surface of such a 
system withannular zones rather than subdividing the system into plane zones. Therefore, 
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Fig. i. Determination of di- 
rection coefficients in axi- 
symmetric system: I) k-th an- 
nular zone; II) i-th annular 
zone. 
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Fig. 2. Comparison of results of 
our calculations with published 
data [6] pertaining to the problem 
with boundary conditions of the I- 
II kind: i) results of numerical 
solution; 2) results of analytical 
solution [6]. 

unlike in determination of direction coefficients for solution of problems of radiative heat 
transfer in the three-dimensional formulation, in the case of axisymmetric three-dimensional 
systems there is no need to stipulate a rather unwieldy amount of initial data on the system 
geometry in the form of arrays of coordinates locating the vertices of approximating plane 
zones; such zones having been replaced here with annular ones (generally in the shape of 
truncated cones). The initial data on location of the i-th approximating annular zone in 
space is unambiguously stipulated by two coordinates of their outermost sections Xl i and X2 i 
along the X axis, sections which have been formed upon subdivision of the initial surface of 
the axisymmetric structure by planes perpendicular to the X axis, and by the radii Rli and 
R2 i of circles in these two sections (Fig. i). 

The direction coefficients are calculated takinginto account the plane symmetry of the 
system with respect to the XOZ plane, while the reciprocality relation between direction co- 
efficients makes it unnecessary to calculate on the computer and store in its direct-access 
memory more than the half matrix of direction coefficients which also contains the principal 

diagonal (~ii # 0). 

The mean direction coefficients for i-th and k-th annular zones are determined from the 
expression for numerical integration written in the final form [i] 

~k=~Fi_F k=4 NO~ N% ~3 i ~3 k 

f l = l  ~1=1 h l = l  ~r2  

where N0 i, N0 k and N3i, N3 k are the numbers of subdivisons of an i-th zone and a k-th zone 
along angle 8 and along the X axis, respectively, for their approximation with polyhedra; r 
is the distance between the centers of elementary plane areas il and kl; AFi, and AFkx are 
the areas of elementary areas approximating the annular zones i and k, ai, and ~k* are the 
visibility angles. 

On the basis of this algorithm, a program for calculating the mean direction coefficients 
has been developed in the ALGOL-60 algorithmic language for a computer with BESM-ALGOL and 
TA-IM translators as well as in the FORTRAN-4 algorithmic language for an ES (Unified System) 
computer. The effectiveness of this program was demonstrated on calculation of the direction 
coefficients for a system of surfaces formed by two coaxial cylinders of equal lengths. This 
calculation has yielded the direction coefficients ~,~ and ~2, (subscript 1 referring to the 
outer cylinder with a 0.5-m radius and subscript 2 referring to the inner cylinder with a 
0.15-m radius, both cylinders being 0.i m long). The number of subdivisions for approxima- 
tion of two annular zones circumferentially was 158 for the outer cylinder and 48 for the 
inner cylinder, the number of their subdivisions along the axis being 5. The total number 
of plane elementary areas in the system was 1030. The machine time for solving th~s ~control 
problem was 14 sec. A comparison of the results ~** = 0.0750 ands2, = 0.1613 with tabulated 
data [4] indicates a close agreement (error of ~ik determination not larger than I%). 

This algorithm of determining the direction coefficients, which takes into account axial 
geometrical and opticothermal symmetry of structures tested in radiative heating stands with 
cylindrical radiators, simultaneously shortens the computer time for calculating ~ ik by one 
order of magnitude and improves the accuracy of these calculations so that a more accurate 
solution to problems of radiative heat transfer in axisymmetric three-dimensional systems is 
obtained faster than by solution of analogous problems in the three-dimensional formulation. 
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Interna ! Prpblem of Heat Conduction. The buildup of temperature flelds within some 
gwo-dlmenslonal region G can be determined from the solution to the two-dlmensional heat- 
conduction equation 

aT 
cp a , , =  d iv (~gradT)+  kgradT + q~ (5) 

for the boundary conditions 

a t  boundary S, 

= 0, T = To, (6) 

T = TI~ 
(7) 

and at boundary Sa 
aT 

--~ On = ~ ( T a - - T s ) + q  z, (8) 

where qz " r -- aoTa4)" The sum of boundaries S, and Sa constitutes the total boundary 
of the two-dimenslonal region. Condition (~) together with the condition of equal temper- 
atures at boundary $2 for the external problem and for the internal problem will constitute 
the condition of coupllng. 

Equation (5) is solved numerically by the method of finite elements, according to the 
Bubnov-Galerkin procedure. The given region isrsubdivided into finite elements of triangular 
shape. On each element of the grid is stipulated a form function Nq (~j n)~ equal to 1 at 
a q node of the grid and equal to 0 at all other nodes and outside the element. Along with the 
form function is also introduced a weight function Mp(~,n) defined on some other grid and 
having the same properties as function Nq. The nodes of the grids atwhich functions Nq and 
Mp are, respectively, stipulated coincide. 

The unknown function T in the given region will be expressed in the form 
N 

= Z NqTq, (9) 
q=l 

where Tq is the value of ~ at the q-th node and N is the number of nodes in the grid. 

Inserting expression (9)into Eq. (5) yields the discrepancy 

(lO) = div (~ grad T) + k grad ? 6- qv - -  cp Ox ' 

equal to the d~fference between the exact solution and the approximate one. In order to 
make it approach zero, it is necessary go satisfy the condition of orthogonallty 

~ Mp~dG = 0 (11) 
a 

or 

af I !M,[ div (~ grad 7~) q- k grad 7~q- q. -- cp -~- j -0. (12) 

For the purpose of reducing the order of Eq. (12), we will integrate it by parts. Applying 
now the Ostrogradskli-Gauss theorem and attaching to Eq. (12) the boundary condition (8), 
then using relation (9), we obtain 

N N 

S {grad  grad (#qrq)-- Mp k grad( qT )l d6 + 
G r q=l 

"-5 S M p~NqTq d S -  ~ M~q,,dO "l- 
s, a (13) 
N 

G q=l 

where Tq = ~Tq/~X. Equation (13) canbe written for each point in region G. The result 
will be a system of N equations put in matrix form as 

IPI {T} + {T} + {E} = 0. (14) 
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Fig. 3o Comparison of numerical solu- 
tion (I) and analytical solution [6] 
(2) to the problem with boundary con- 
ditions of the I-III kind, with NBi =0.i. 
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Fig. 4. Change in temperature of heated 
surface of axisymmetrlc structure, at 
density of incident thermal radiation 
flux E = 1.26-106 W/m 2 at x = 0.028 m: 
T([), X(m), ~(sec). 

The coefficients in matrices [P], [H], and {F} will he represented as 

PPq = S CpMpNqdG; 
G 

hpq = S [s grad (Nq) grad (Mp) - -  Mpk grad (Nq) + MpczNq] dG; 
G 

G $2 

(15) 

{T} = T2 is the vector-matrix Tq; 

N 

{T} = 7~2 ' is the vector-matrix Tq . 

N 

(16) 

(17) 

The system of equations (14) is solved by means of a finite-difference scheme which 
reduces it to a system of algebraic equations. It must be taken into consideration that 
system (14) is generally a nonlinear one and to be solved by an iterationprocess. For the 
center of the time interval from T to ~ + AT one can write 

( 2 [ P ] )  2[P] ,T ~}, {FI, [H] + ~ {T}~+a,/~ = - - A T  --  (18) 
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where [H], [P], and {F} are defined at that center point. 
such an interval are determined from the relation 

The temperatures at the end of 

(19) 

In order to evaluate the integrals in expressions (15), it is necessary to stipulate the 
form of functions Nq and Mp. From the practical standpoint it is most expedient to stipulate 
them as linear functions of the coordinates 

Nq = (% -+ b~?] + e,z~)/2A, (20) 

Mv = (a v + bv~ + cp~)12A, (21) 

where aq, bq, ..., Cp are functions of the coordinates of nodal points and A is the area of 
a finite element. 

The region for which calculations are made can have any axisymmetric geometry and con- 
sists (in general case) of four subregions, each of a different kind and with different 
physical properties. Those properties can also depend on the temperature and on the direc- 
tion, which makes it possible to study real objects by taking into account physical nonline- 
arity and anisotropy of the material. A program had been developed for thus calculating the 
temperature field of a plate made of a material with the physical characteristics pc = 0.2678. 
10-TJ/(m3.K) and ~ = 225 W/(m.K). An examination of the graphs in Figs. 2 and 3 willreveal 
that the results of numerical calculation agree closely with known analytical solutions [6]. 
The graph in Fig. 4 depicts the results of heating calculations for an axisymmetric structure 
whose heated surface is a cylinder (0.03 m in diameter) coupled to a truncated cone (outside 
diameter of cone 0.068 m). The length of the heated structure is X = 0.06 m in the direction 
of its axis of rotation. The material of this structure is graphite, its orthotropic thermal 
conductivity being strongly temperature dependent. The radiative heater is located inside 
the structure. The results indicate that the temperature of the cylindrical part (X = 0-0.04 
m) drops somewhat, owing to partial emission of radiation. The temperature of the conical 
part (X = 0.04-0.06:m) drops sharply because of emission of radiation as well as because of 
a decrease in the density of the resultant thermal radiation flux. In the design of a struc- 
ture one usually knows, with some degree of accuracy, how the thermal fluxes acting on it 
under actual service conditions will vary in time. By mathematically modeling the heating of 
that structure in the test stand, one can match the operating modes of radiative heaters so 
as to simulate the action of the actural thermal fluxes. By analyzing the temperature fields 
at the same time, one can recommend improvements in the design before performing the control 
tests. 

NOTATION 

E, radiation flux density; R, reflection coefficient;, k, kernel of the integral equation; 
c, specific heat; 0, density of the material; T, temperature; %, thermal conductivity; qv, 
density of volume heat sources; 3, time; ~, heat-transfer coefficient; ~, emissivity; qR, 
radiation flux density; oo, Stefarr-Boltzmann constant. Subscripts: eff, effective value; 
c, intrinsic value; and a, ambient medium. 
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MATHEMATICAL MODELING OF HEAT TRANSFER IN SCREENED FURNACES 

OF RADIAL--CYLINDRICAL AND BOX TYPE 

V. M. Sedelkin and A. V. Paimov UDC 936.3:621.181.7 

A zonal model of the heat transfer in screened furnaces is proposed. Theoretical 
dependences for the distribution of the heat fluxes in the combustion chambers of 
industrial tube furnaces of two types are given. 

Increasing the unit power of furnace equipment requires increase in their size and im- 
provement in the sealing of the structure, which complicates experimental investigations. 
This has led to an increase in the role of mathematical modeling of the heat transfer in fur- 
naces. Zonal methods are currently the most promising for theoretical calculations. 

A distinguishing feature of screened furnaces is the complexity and diversity of their 
construction and also of the methods of organizing the furnace processes, which is extremely 
difficult to take into account in theoretical models. Simplified schemes are usually used 
here. 

In the present work, an attempt is made to develop a sufficiently universal zonal method 
of calculation for screened furnaces. To this end, all chambers are divided into two classes. 
The first consists of chambers of radial--cylindrical type. These are characterized by the 
presence of cylindrical, conical, annular, and disk surfaces, bounding both the chamber itself 
and the isolated zones. The second class comprises furnaces of box type, whose volume is 
bounded by plane surfaces. 

The physical parameters of the medium are assumed to be constant within the limits of 
each zone and to change discontinuously at the zone boundaries. 

To universalize the method, the zones are classified in terms of geometric (Tables 1 and 
2) and optical (Tables 3 and 4) features. The plus and minus signs in the tables denote the 
presence or absence of the corresponding initial parameters for zones of different geometric 
types. 

The geometrical zonal model of a furnace may be considered in the form of a set of zones 
of various geometric forms included in the classification tables, which allows the construc- 
tional features of the particular furnaces to be taken into account. 

The calculational system of equations used in the mathematical model to find the zonal 
mean temperatures and heat fluxes takes the form [i] 

~ ~ (i) 
+ = o, i =  1, 2 . . . . .  N .  

~=I I$=1 V=t 
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